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Project Overview

Timeline

* Year 2 of 3-year program
Project start date:  FY2019
Project end date:  FY2021
» Builds on previous R&D in FY16-FY18

Budget
« FY20: $500k (Task 1%*)

*Task 1: Low Temperature Emissions
Control Catalysis Research

Part of large ORNL project
“Conftrolling Emissions from High
Efficiency Combustion Systems”
(2018 VTO AOP Lab Call)
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Barriers Addressed

U.S. DRIVE Advanced Combustion & Emission
Control 2018 Roadmap Barriers & Targets:

- Addressing emission compliance barrier to
market for advanced fuel-efficient engine
technologies, such as 90% conversion of
NOx, CO and HC at 150°C

 Efficiency, durability, sulfur tolerance of
afterfreatment systems

Collaborators & Partners

« US DRIVE Advanced Combustion and
Emission Conftrol Tech Team

« University at Buffalo (SUNY)

« Harvard University/Metalmark Innovations

¢ Chalmers University

TTTTTTTTTTTTTT . i
SEARCH CENTER OVEIWEIP Relevance > Approach » Collaborations Progress Future Work



Challenging emissions/efficiency regulations dictate need for new technology

Develop new emission control technologies to enable fuel-efficient engines with low exhaust

temperatures (<150°C) to meet emission regulations. Goal: 90% Conversion at 150°C

o Greater efficiency

lowers exhaust Higher efficiency engines have

Fuel Economy Drivers

tem pera ture lower exhaust temperatures
CAFE standards E Conventional (Stoich)*
CO, emissions standards 450 +
.. Consumer demand/cost © 100 =
o CGTO'YSIS.IS ofownership g g 3 _;
challenging at low FRE
[ Q
temperatures 2 g’
Required Emissions Reductions = N
505 Advanced LTC (Lean)
. . T m 2016 m2025 . : : : ' i : |
e Emissions standards sea o 1 2 3 a4 s
geﬂ-lng more 0.3 77% Engine Load at 1500 rpm in BMEP (bar)
stringent 202 200 * “Conventional”: modern state-of-the-art
. 20.1 0 70% GDI Turbocharged (stoichiometric)
- Moving towards zero £ o * “Advanced LTC”: advanced lean-burn

NMOG+NOx PMx10 €O /10 Low Temperature Combustion (LTC) engine
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Guiding Documents Define Indusiry Needs

%

B CLEERS e

A

based of

2017 CLEERS Industry Priorities Survey

Workshop Report
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USDRIVE ACEC Tech Team
Roadmap (2018)

Relevant to all
combustion approaches
cited in ACEC Tech
Team Roadmap

Overview Approach » Collaborations Future Work

Identified Needs Addressed:

* Lower temperature CO and HC
oxidation

* Low temperature NOx reduction

* Cold start emission trapping

technologies
— Especially passive NOx adsorbers

* Reduced PGM

* Better durability

* Promote innovative catalytic solutions
via partnering with DOE BES programs

Low Temperature Dilute Gasoline
Combustion (LTC) Combustion

Clean Diesel
Combustion (CDC)




Low temperature emissions control challenges affect multiple platforms

o 250°C Current Unique emissions profiles  ORNL R&D portfolio spans wide range
150 C Chal/enge nemRERE == Catal St technolo . o . .
o ) y gy  require variety of catalyst of applications, technologies, size
EfoICIGIF;Y I'r(agg):je EmIS/SII(OHS formulations and systems scales, commercial readiness
enelfli ! .
0 '250 500 7501000 0 (g 2?)30 Catalysts Projects
% & I
Stoich. § » ,% ¥ co/10 i 1 ( CLEERS (ACE022) h
m P HC Model new trap materials and aging effects
E W
Sl = M“”‘h‘ H ] Nox a ﬂ lon SCR catalysts )
. Estoich H . ) .
. 10% H e Low Temperature Emissions Control (ACE085)
# H co/10 [ 7 Discover new low T catalysts & traps )
Lean ;5 !
| - - " HCT TW? [ Lean Gasoline Emissions Control (ACEO033) h
‘ ] Nox L Develop pathways for lean gasoline engines
| by, |Ppw N fo meet emissions with minimum fuel penalty )
;;H»;f i core ( ) (" Chemistry & Control of Cold Start Emissions )
! He ' (ACE153)
cbc P - :- NOx HCT) m = } Understand how exhaust chemistry impacts
(@) tL v \S J \device performance & design )
oB : €0/10 V7 ~ (Cummins Emissions Control CRADA (ACEO32T
LTC |- Hi e PNA Understand how aging affects properties
(ACI) “HJ y - n HCT i GDgO and performance of SCR catalysts )
'r_gj i . PMV*20 \ J
0% 10% 20% 0 250 500 750 1000 0 10 20 30

*(efficiency and emissions at 2000 rpm, ~2 bar BMEP)
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Employing US DRIVE protocols to evaluate novel catalysts

Hold: Degreen at
10 min @ 500°C 700oC for 4h

* Project employs US DRIVE Advanced Combustion and Emission 600 -
Control Team Aftertreatment Protocols for Catalyst
Characterization and Performance Evaluation

Ramp 1:
500-100°C
@ 2°C/min

Ramp 2:
100-500°C
@ 2°C/min

Pre-treatment |
20 min @ 600°C

e Full suite of protocols at: www.CLEERS.org and in literaturet

LTC-D: Low Temp.

S-GDI: Stoich. Gasoline

Combustion Diesel

Total HC,: 3000 ppm

Direct Injection
Total HC,: 3000 ppm

Powder Catalyst

CO: 2000 ppm CO: 5000 ppm
NO: 100 ppm NO: 1000 ppm
H,: 400 ppm H,: 1670 ppm
H,O: 6 % H,O: 13 %
CO,: 6 % CO,: 13 %
O,: 12 % O,: 0.74 %
Balance N, Balance N,
X QAK RIDGE | it8hvanon
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Requirements

Reactor ID 3-13 mm

Catalyst particle
size <0.25 mm

Catalyst bed L/D=1

Space velocity
— 200-400 L/g-hr

— For 0.1 g, flow
333-666 sccm

Catalyst inlet temperature, °C

100 ———im——————————— - — -

500
450 +

B
o
o

Catalyst inlet temperature, °C

50

Catalyst -

or Run #

I i
0 10 210 220
Test time, min

420

mT90

350 |
300
250
200 |
150 -+
100 |

1 23 4 1 2 3 4
NO co

12 3 4



http://www.cleers.org/

Wide-ranging collaborations to maximize progress and relevance

« Academia
— University at Buffalo (SUNY): Catalyst synthesis/characterization/eval.; Prof. Eleni Kyriakidou, Judy Liu, Junjie Chen
- Harvard University: Wyss Institute for Biologically Inspired Engineering, Prof. Joanna Aizenberg
« Synthesis of new structured and stable catalysts (PGM supported on metal oxides); evaluated at ORNL
— Chalmers University of Technology: Synthesis of LTA zeolites for PNA, Prof. Louise Olsson and Aiyong Wang
— Karlsruhe Institute of Technology: joint paper on oxidation catalysts with Olaf Deutschmann

e Indusiry
— USCAR/USDRIVE Low Temperature Afterireatment (LTAT) working group
* low temperature evaluation protocols, discussions about industry research needs
- Metalmark Innovations: Spinoff company associated w/technology from Harvard University; Tanya Shirman & Sissi Liu
- Johnson Matthey: Industry input from Haiying Chen; partner on DOE project Sharan Sethuraman
« DOE Basic Energy Science researchers
- Sheng Dai and Ashi Savara (ORNL), Center for Nanophase Materials Science
o Catalysts synthesis, characterization, and modeling synergistic relationships
o Other DOE funded projects
— CLEERS: Dissemination of data; presentation at CLEERS workshops
— PNNL: periodic teleconferences established to share data on VTO projects; shared evaluation of technologies
— University of Houston-led project with University of Virginia, Johnson Matthey, Southwest Research Institute

%OAK RIDGE ?Q}:\(I)S'\IJ’%IE{TATIDN . i i
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Milestones of 3-year project

e FY19 Milestones: [ met |
- Determine ion-exchange/nanoparticle distribution in HCT/PNA

e FY20 Milestones: | ontrack |

- Determine which multifunctional configuration yields the highest activity while
simulating cold start heating rates using the top performing HC Trap/PNA + DOC

e FY21 Milestones: | entrack

— Demonstrate 90% conversion of criteria pollutants CO, HC, and NOx at 150°C on
hydrothermally-aged catalysts
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Response to reviewer comments

Numeric scores on a scale of 1 (min) to 4 (max) This Project @ Sub-Program Average
4.00

 REVIEWER: Emphasis should be on the gradual deterioration
of NOx storage efficiency on repeated cold-start tests. 350
Solutions to this deterioration need to be explored, either
through catalyst changes or system modifications

— This was the primary focus of PNA research this year; identified
primary deactivation agent 200

3.00

2.50

e REVIEWER: For PNA and HC frap...suggested that a re- 150
evaluation of this work should take that into consideration
for either improving this fechnology or moving to a new

1.00

material 050
- New materials have been synthesized that include bi-metallic oco 350 3.38 3.25 3.50 3.4
ion-exchanged SSZ-13 and a new zeolite (LTA) At e gy OlEoration  Fueire Research Welgitad Average
 REVIEWER: the aging protocol currently being used, 800°C Relevant to DOE Objectives Sufficency of Resources

seems overly aggressive for these materials, as compared
to what temperatures they may see in use...[look into]
effect of a temperature sweep (between 700°C-850°C,
every 25°C) on the material

— Included several example of lesser-aged materials in
presentation this year
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Technical
Accomplishments

e Passive NOx Adsorbers
- Understanding deactivation
- Investigating new formulations

o Oxidation Catalysts
— Core-shell PGM support
- Metalmark Innovation porous PGM support

o Stoichiometric TWCs
— Applying novel catalysts as TWCs
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Passive NOx Adsorbers (PNAs) show a gradual degradation in NOx uptake
with repeated evaluations using fully simulated exhaust flows

. 100 ror ottt No, - 600 PNA
e« PNA for this = . FINA
evaluation is 1% S I J| 1% Pd/SSZ-13
Pd/SSZ-13 2 — Trial 2 1003 Dggrecerlleﬁl
. . = jal ) /00 °C,
- Commercial zeolite g 50 e ;. 00g
prChCIS@d % 25 | —Temperature / 2003
- Pg addtion , M
performed at ORNL 0 / . . . . . . Lo .
. 0 500 1000 150Q|_irne (5)2000 2500 3000 3500 Total HC]: 3000 ppm
 Up to 10 trials needed ZZANO:Pd
fo fully observe 0.70 —temperztre
deactivation L 430
0.60 CO: 2000 ppm
. . = NO: 100 ppm
o Understanding this g 00 - 380 3 | H,0: 6%
process and g 040 é 7 3 6.0 2%
inves’rigo’ring S 030 Vé //, 330 5 | Balance Ar
mitigation strategies 2 0.20 g :’g 130 O
has been focus of 0.10 é g
research this year 0.00 % Z 230
1 2 3 4 5 6 7 8 9 10 11
OAK RIDGE NATIONAL Trial #
%National Laboratory EESAEERPCOI-?&LI?FR




Repeated evaluations with only NO show lower overall uptake, but not
significant degradation

« Release profile is notably different NO-only 1% PZIL?SZ 13
than when flowing the full LTC-D 07 - o PA/S3L-
' Degreened
« Overall NOx uptake decreases by 0.6 700 °C, 4 h
about 50% of the initial LTC-D value '
. O Initial PNA uptake with full LTC-D NO-on
« Removing reductants has large e Ol
impact on functionality o)
£ 0.4 -
NO-only 600 CZ) 0.3 -
£75 4 —Trial1 3 0.2 - 7R ? % NO: 100 ppm
- , - 4005 7 Z % PP
S —Trial 2 g g g ? g (H:QCC)D:. 2 Zv
E 50 4 —Trial 3 £ 0.1 g? g g ? Oy 12%
S —Trial 4 - 200 ® g g ? g Balance Ar
© 25 1 —Temperature o 0 7 2 %
(@]
Z 0 . . ~ —L 0 1 2 3 45 67 89
0 1000 2000 3000
Time (s) NO-only-Fresh Catalyst

%%}K RIDGE | {0,
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Adding CO initiates degradation as NOx uptake/release gradually decreases

» Release profile more closely resembles

full LTC-D NO+CO
« Overall NOx uptake higher than NO- 0.7 7
only, but starts decreasing significantly 0.6
« Addition of CO clearly leads to " : i
deactivation...do all reductants & 0.5 |nifial PNA uptake with full LTC-D_
cause thise [e
€04 -,
2
— 100 A NO+CO - 600 < 0.3 1
% —Bypass § - 0.9
= 75 4| —Trial 1 LT
5 —Trial 2 i 400-‘?2
© 50 - Trial 3 o 0.1 -
g —Trial 4 \ L 200 3 ‘
O 25 4| —T t s
§ emperature / \ 3 0 7
0 . e . () 1 2 3 4 5 6 7 8
0 1000 2000 3000
Time (s) NO+CO

%%}K RIDGE | {0,

ATION . . .
ional Laboratory | RESEARCH CENTER Overview p Relevance > Approach > Collaborations > Milestones }m Future Work

PNA
1% Pd/SSZ-13
Degreened
/00 °C, 4 h

NO+CO

CO: 2000 ppm

NO: 100 ppm
H,O: 6%
CO,: 6 %
O,: 12 %
Balance Ar




H, does not lead to deactivation nor does it enhance NOx uptake

» Release profile initially looks like NO-

only, but shifts to more closely NO+H, PNA
resemble full LTC-D after 4 trials 07 - 1% Pd/SSZ-13
' Degreened
o Overall NOx Lgp’roke even lower than 0.4 700 °C, 4 h
NO-only, but is stable 9]
. : Initial PNA uptak ith full LTC-D
. H, does not deactivate like CO, but & 0.5 |- === == SRS WITIIEZ £2 NO+H,
also does not enhance uptake O
€04 -
NO+H 2
+ _
ol —Bypass & H,: 1000
L 75 {—Trial 1 i 400';; 0.2 7 . . NO: 100 gﬁm
- —Trial 2 =2 77 Z 77 H,O: 6%
§ 50| s SR AR R R R R
O —Tri = 77 77 77 2! o
= Trial 4 L 2000 A 09 0 U 9 99 0 0 7
T 25 {—Temperature —3 0 ? 7 ? ? 2 :4! ? ? ? ? salance At
& M =
5 0 . —L 0 1 3 4567 8 910
O 0 2000
Time (s) NO+H,
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NOx+HCs indicate enhanced NOx storage with no indication of deactivation

« HCs added NO NO NO NO
sequentially in + CyH, + C,H, +C,H,  +C,H +C;H,+C;Hg+C,oH,,
the following + C;H, + C;H, PNA
sequence 0.7 - + C;Hg 1% Pd/SSZ-13
' Degreened
— 700 °C, 4 h
» Regardless of 0 0.6 1
fne At included 5 0 Initial PNA uptake with full LTC-D NoYPIT
indication of S __ ___
deactivation CZ) 0.4 ? g g Total HC,: 3000 ppm
4 A C,H,: 500
0 g g g C4H,: 300 EEQ
= ﬂ ﬁ ; C,Hg: 100 ppm
=0.3 - g ? g CioHoo: 2100 ppm
T 7 7 Z
: 1
« DoallHCslead QO 0.2 1 g g g NO: 100 ppm
to enhanced v Z g 7 ?:28. 2%
2 O _ 77 7 ) %
NOx uptake?s > 0.1 7 g g O, 12%
g g g Balance Ar

%
2 3 4 5 6

o

NO + LTC-D HCs
%QAK RIDGE | ¥ rarion

ional Laboratory | RESEARCH CENTER




Ethylene and propene show enhanced NOx uptake; not propane/decane

NO

e Evaluated NO
uptake in the

presence of
individual HCs

 Unsaturated
HCs that can
access the
zeolite pores
enhance NOXx
uptake

— Saturated
HCs do not

« Uptakeis
stable across
all HCs
evaluated

%%}K RIDGE |\l amon
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0.7

o O
g o

o
~

NO stored (mol NO: mol Pd)
o O
N w

©

&)

NO
+ C3H,

Initial PNA uptake with full LTC-D

NO
+ C;H,q

NO
+ C;oH,,

NO
+ LTC-D HCs

7

7
?
%

p7

7
é

PNA
1% Pd/SSZ-13
Degreened
700°C, 4 h
NO+HCs
Total HC,: 3000 ppm
C,Hy: 500 ppm
CsHy: 300 ppm
CjsHg: 100 ppm
CioHp: 2100 ppm
NO: 100 ppm
H,O: 6%
CO,: 6%
O,: 12 %
Balance Ar

Z

n

.

.

7

7 7

7B 77 7

ARRRR R

2 7 7 9 7 7

(. . 1 2 3|1 2 3
NO NO NO NO

+ C;H, + C;H, + CijoH, '+ LTC-D HCs




Additional PNA materials being synthesized and evaluated using bimetallic
systems and LTA-zeolites

e Primary goal is to identfify .
more stable PNA material Suppc?rt S LS MOI.O :
Material Pd X Ratio

e Additional goalis Pd

reduction in PNA SSZ-13 Pd, Fe  0.66 0.34 1:1 lon-exchange
SSZ-13 Pd,Co 0.64 0.36 1:1 lon-exchange

« Total metal loading is SSZ-13 Pd, Ag 0.50 0.50 1:1 lon-exchange
normalized to 1%wf $SZ-13  Pd,Cu 0.63  0.37 1:1 lon-exchange

« Different support material LTA Pd 1.00 n.q. n/a lon-exchange
and synthefic techniques are LTA Pd,Cu 0.3  0.37 101 lon-exchange

being used for better stability

&OAK RIDGE TRANSPORTATION : i i
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Technical
Accomplishments

e Passive NOx Adsorbers
- Understanding deactivation
- Investigating new formulations

o Oxidation Catalysts
— Core-shell PGM support
- Metalmark Innovation porous PGM support

o Stoichiometric TWCs
— Applying novel catalysts as TWCs
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Employing unique high surface area supports for Pt and Pd to achieve 150 °C
goal and investigating pathways to limit PGM content
Varying diameter of SiO,@ZrO,

initiated with goal of creating surface
that is less prone to Pt /Pd sintering

« Supports continue to show good initial THC
reactivity, but not reaching 0% conversion until
~250 °C after hydrothermal aging*

« Additional Pd, Pt, and Pt+Pd oxidation catalysts
have been synthesized over the past year

- Ofther core shell materials with varying diameter:
Si0,@Ce0,, Si0,@Ce0,-1rO,, and CeO,@7ZrO,

- Ceria supports including core-only

Si0,@Zr0,
mixed oxide

Hydrothermally aged at 800 °C for 10h

1% Pd/SiO,@7ZrO, + 1.8% P1/SiO,@7rO, THC
: ) ~ <
Physical Mixture 300 490 nm 100 nm
100 WT50 OT90 WT50 OT90
Zg r 250 Conditions during 2°C ramp
= 0 200 total HC,: 3000 ppm
< @
g %0 2150
7 S0 ©
w0 qéiloo
=]
U ;2 = 50 CO: 2000 ppm
10 NO: 100 ppm
. o === T e B Also H,, O,, H,0 and CO,
100 200 300 400 500 Degreen  Aged Degreen Aged
800°C/10h 800°C/10h

Temperature (°C)

%OAK RIDGE | ¥t raron
National Laboratory | RESEARCH CENTER * - E. Kyriakidou, T.J. Toops et al., US patent number 10,427,137 (2019).




Many new oxidation catalyst/support variations evaluated

* New synthesis approach
with some supports

90 m2/g ceria obtained CO: T-50 (after 700°C) LTC-D: Low Temp.
B . Combustion Diesel
with PVP (PolyVinylPyrrolidone) Pt/CeO,@1Ir0O,
addition during synthesis Pd/CeO,(PVP)QZIO, mm—mmm— Total HC,: 3000 ppm
Pd/CeOz@ZrO2 I
H . |
molar equivalent of 1% Pd Pd/ i;?g%;: cor 2000 pom
. i | 9 2 I NO: 100 opm
- varied between 1-1.8% by CeO,@Ir0, Pd:Pt 1:3/Si0,@7r0, m— Hy: 400 ppm
weight depending on Pd:Pt 1:1/Si0,@Zr0,, m— o oz
PT:Pd rafio Pd:Pt 3:1/5i0,@ZrO, ———s— o 2%
- 1% Pdis the molar Pd/SiO,@Zr0, m— Balance N,

equivalent of 1.8% Pt
— All Pt additions can be

THC: T-50 (after 700°C)

. Pt/Ce0,@Ir0,
viewed as Pd replacement Pd/CeO,(PVP)@IrO,

CeO. sphere Pd/Ce0O,@IrO,

« Many of these samples 2P Pd/CeO, (PVP) sphere

show improvement over
the initial Pd/SiO,@7rO,

- Bi-metallic Pd:Pt/SIO,@7rO,
series showing best inifial

Pd/CeO, sphere
Pt/SiO,@ZrO,

Pd:Pt 1:3/Si0,@ZrO,
Pd:Pt 1:1/Si0,@ZrO,

results Pd:Pt 3:1/8i0,@1rO,
Pd/SiO,@ZrO
- Down-selected for : /SI0, 2
additional evaluations and Sio,@17ro, 100 150 200 750 300
aging Temperature (°C)

%OAK RIDGE ?slﬁsﬁ%lﬁTATIDN . i i
National Laboratory | RESEARCH CENTER Overview p Relevance > Approach ) Collaborations > Milestones m Future Work




Further aging novel catalysts shows notable improvements;
comparing to commercially-available PGM catalysts quantifies progress

* Pt:Pd supported on CO: T-50 + T-90 (after 800°C) ®T-50 OIT-90
SiO,@7rO, continue to

show good activity

LTC-D: Low Temp.
Pd:Pt 1:3/Si0,@ZrO, NN | Combustion Diesel

Pd:Pt 1:1/5i0,@Zr0, TN | Total HC;: 3000 ppm
Pd:Pt 3:1/5i0,@ZrO, I |

« Aging at 800°C shows
minimal loss in CO

. CO: 2000 ppm
CICT|V|Ty Clnd THC T—SO T NO: 100 ppm
. $ Hs: 400 ppm
- 2‘9? forJHC Is notably Pd or Pt on I — o 6%
claye $i0,@Iro, — O 2%
. . alance N,
- possible improvements
with Wgshcogﬁng THC: T-50 + T-90 (after 800°C) ET-50 OT-90

Pd:Pt 1:3/Si0,@7rO, [ |
Pd:Pt 1:1/Si0,@ZrO, I
Pd:Pt 3:1/Si0,@1ZrO, [

 Purchased baseline
materials from Sigma- %
Aldrich to provide
commercial standard
for comparison |

- 1% Pd/alumina and 1% []
Pt/alumina catalysts | |

SIGMA-ALDRICH

- Evaluated individually
and in a physical
mixture (Pd + Pt)

%OAK RIDGE ?slﬁsﬁ%lﬁTATloN . i i
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Technical
Accomplishments

e Passive NOx Adsorbers
- Understanding deactivation
- Investigating new formulations

o Oxidation Catalysts
— Core-shell PGM support
- Metalmark Innovation porous PGM support

o Stoichiometric TWCs
— Applying novel catalysts as TWCs
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PG M su p po rted on Ceoz @ y4 roz Ce0610, CO: T-50 (after 800°C) mT50

R
1ct R
shows promising results for TWCs Pd/Ce0,6L0,
Pd/CeO,(PVP)@ZrO, I
o Same family of catalysts
evaluated under LTC-D
conditions —
- Pt/Ce0,@Ir0, THC: T-50 (after 800°C) mT50
_ Pt/Ce0O,@IrO, |
:/gegz@iz\;fz@ 10 Ce0,@1r0, Pd/Ce0,@1r0, \
- Pd/CeO,(PVP)@IrO, | Pd/CeO,(PVP)@IIO, |
- Evaluated affer hydrothermally S,GMA%M:H
aging at 800°C
|
* All show similar behavior for CO, oo NOx: T-50 (after 800°C) mT50
THC, and NOx Direct Injection Pt/Ce0,@ILr0,
Total HC,: 3000 ppm Pd/CeO,@7rO, T
o« Compared to Sigma-Aldrich Pd/CeO,(PVP)@ZrO,
samples, the Pt/Ce0O,@ZrO,
formulation shows remarkable NSt i
improvement o R e
g? o.;iZ: 100 150 200 250 300 350 400 450
Balance N,
NATIONAL Temperature (°C)
BRI B




Evaluated interesting highly porous and CO: T-50 + T-00 (after 800°C) @750 CIT90

Metalmark Pt/AlLO, N |
stable support from Metalmark as TW s

g THC: T-50 + T-90 (after 800°C) ET50 OT90
k 0.57% Metalmark Pt/Al,O, [

e Collaboration initiated with
Harvard's Wyss Institute

- Approached us with a subset of s S
data that looked promising o ‘_‘{5:
- We then agreed to evaluate L (222 S

samples under CDC, LTC-D, and S- *Metalmar
GDI oxidations protocols Pd or 17%Pt on Al,O, i

~ 0.57% Pd or 1.0% Pt on ALO,
B

« Results shown are after aging for SIEMAALDRICH Vietaimark PA/AL0, | "\
50h at 800°C | )
— Results for S-GDI look promising NOx: T-50 + T-90 (after 800°C) MT50 OT90
and show improvement over the 5 ot 1310 h. Gasolng :
Si Aldrich Pd/ALLO Direct Injection Metalmark Pt/ALO, ]
ome e N ot HC: 5500 pem  m
- Resultsfor LTC-Dand CDC are also | - © o
comparable CsHg: 450 ppm
i-CgHs: 0 ppm
* - Images from upcoming publication: T. Shirman et all. (N:Sf ?888 ggm Metalmark Pd/Al,O, [
“Raspberry colloid-templated approach for the synthesis | .. ‘ 1670 ppm d
of oxidation palladium-based catalysts with enhanced H,O: 13%
hydrothermal stability and low-temperature activity,” 8923 0 ;i?
Accepted to Catalysis Today (2020). Balance N, e 100 150 200 250 300 350 400 450

Temperature (°C)
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RemainingiChallenges; Future Directions

- Trap Materials

Evaluate new formulations with continued focus on
durability; investigate methods of limiting CO
exposure or drawing it away from the Pd

PNA: NOx uptake needs to be stabilized

Investigate other zeolites and formulations listed in
PNA section, including fully non-PGM formulations;
combine HCT and PNAs with oxidation catalyst

HCT: Increased storage capacity of lighter HCs
necessary

Oxidation Catalysts

Continue to evaluate supports that are already

NEET TMRIOVES! OIEIeNEn Off LS e eging made with emphasis on ceria-based supports

Move to minimize diffusion constraints in catalysts
such that T-50 is similar to T-90; including initiating
washcoating procedures

Expand collaboration with Harvard
University/Metalmark Innovations with more
supports and bi-metallic formulations

- Stoichiometric TWCs

Investigate formulations with lower levels of PGM;
evaluate oxygen storage capacity/kinetics;
install valves to allow evaluation while dithering

Enhanced low temperature reactivity with
minimum PGM

Any proposed future work is subject fo | change based on funding levels

NATIONAL
TRANSPORTATION . .
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ummary

Relevance: Develop new emission control technologies to enable fuel-efficient engines with low exhaust
temperatures (<150°C) to meet emission regulations

Approach: employ low temperature protocols to evaluate novel catalysts and systems

Collaborations: Wide-ranging collaboration with industry, academia, other DOE projects, & national labs maximizes
breadth of study, guides research from other funding sources

Technical Accomplishments:

- Trap Materials: Identified CO as primary deactivation agent in PNAs; Showed CO and unsaturated HCs
enhance NO uptake in PNAs; lllustrated HCs/H, do not cause deactivation; Synthesized novel PNA materials

— Oxidation Catalysts: Evaluated a wide range of PGM/core@shell oxidation catalyst/support combinations with
some showing progress to 150°C challenge; Established baseline commercial material to compare progress

- Stoichiometric TWCs: Using novel CeO,@7rO, formulations showed improved activity compared to the baseline
commercial material when using Pt; lllustrated improvements with Pd catalyst from collaborative partner
Metalmark Innovations

Future Work:

- Trap Materials: Evaluate new formulations with continued focus on durability while limiting CO exposure to or
drawing it away from Pd; Investigate other zeolites, including fully non-PGM formulations; combine HCT+PNA

— Oxidation Catalysts: Continue full-scale evaluation with emphasis on ceria-based supports; Move to minimize
diffusion constraints in catalysts; Initiate washcoating procedures; Expand collaboration with Metalmark

- Stoichiometric TWCs: Investigate formulations with lower levels of PGM; Evaluate oxygen storage
capacity/kinetics; Install valves to allow evaluation while dithering
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PNA and HCT evaluation protocol

LTC-D: Low Temp.
Combustion Diesel

e« Repeated measurements to
evaluate stability

Total HC;: 3000 ppm

e Using gases for oxidation protocol

since this will eventually be used cor - 20pem
for a multi-component evaluafion == = 5o %
with oxidation catalysts . ArCalcination | s00°c,sn |05 12%

NO Uptake
30 min at 100 °C

600 91 1 F : — — r — r - Open
500 + 3 F
o : Hold : 3
2 400 A - > o
5 14 h at 600 °C: =
& 300 : : =
Q —_
£ 200 | | | 2
@
100
0 ; .: —— .: ............... Close

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324
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PNA combined system repeated evaluations

e Last yearin combined
system there were
suggestions that the
deactivation was slowed

« However, after repeated
evaluations deactivation is
still observed

e Possible slowing due to
CO interacting with OC
and HCT

%OAK RIDGE ?I?lg)sligﬁTATIDN : i i
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NO:Pd (mol:mol) uptake
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New approach: Cover all of the SiO, surface with Zr
Synthesis of SIO,@ZrO, core@shell Oxide Support

Brij 30* Zirconium Butoxide
-H
N 7
o, 0~
4
~TO0 710,

: Xs SIOZ
\O; /O: (8 w/w in butanol) o \:
’ X"

o i mvEtlllanoL/
Synthesis of silica spheres Silica core and amorphous
*(Brij 30): Polyoxyethylene(4) lauryl ether shell with zirconium hydroxide

Material Surface Area
(m?g)
ZrO, 97
Zr0,-SiO, 153
Sio,@Zr0, 210

Silica core and zirconium oxide
shell after calcination at 700 °C

« SiO, is located in the core and ZrO, in the shell
* The ZrO, shell seems to be porous

« Growth of SiO,@ZrO, spheres. Shell is maintained. Diameter
at: 900 °C: ~250 nm

%OAK RIDGE |yanonat - on Support: P.M. Arnal, C. Weidenthaler, F. Schiith, Chem. Mater. 18 (2006) 2733-2739.
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Trap materials + oxidation catalysts significantly improve overall system
functionality after aging

Flow 100 | I 250
l 200+
S
g )
g 9'_"150
5 o
: 5
= o
s 2
O £ 100 . Sls -
(4] = [0} =] Q
i0,@Zr0 = S E IS
SI0, @710, Aged Trap+DOC NI E B E
Mix S0 ¢ SISI2IZ 1519
» Aged DOC-only == = = ad P71 (=] il 17 fa
0 ' * ' , gl | |2
100 150 200 250 300 0 < <
Temperature (°C) co THC

Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO, @ 300°C 5 h
Desulfation under cycling lean-rich conditions for 30 min at 500°C, 30s per condition

Conditions during 2°C ramp
total HC,: 3000 ppm

o Although Pd/ZSM-5 trap is heavily degraded, it still improves
reactivity of system considerably in dual-bed configuration

CO: 2000 ppm
NO: 100 ppm
B o Also Ha, Oz, H,0 and CO,

RESEARCH CENTER
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Si0,@ZrO, core@shell
size effects in LTC-D

« Synthesized range of core-
shell support sizes 100-450 nm

gLl

 Evaluated in LTC-D oxidation o e W
profocol ~490 nm ~290 nm ~150-200 nm ~120 nm

- Usedfine CO: T-50 (after 700°C) CO: T-50 (after 800°C)
powders
' | — ]
« Each compares I — I E—
favorably to
' Pd:Pt 1:3/8i0,@ZrO, Pd:Pt 1:3/8i0,@ZrO,
but no trend 400 nm Si0,@ZrO, ———— 400 nm SiO,@7rO,, m——
apparent 250 nm SiO,@ZrO,, n— 250 nm SiO,@ZrO,, —
1CD: Low Tomp. 100 nm SiO,@ZrO., — 100 nm SiO,@ZrO, n—
Combustion Diesel
THC: T-50 (after 700°C) THC: T-50 (after 800°C)
Total HC,: 3000 ppm
;. |

1 |

CO: 2000 ppm
:Oi lgg pPmM Pd:Pt 1:3/Si0,@7rO, Pd:Pt 1:3/Si0,@7rO,

. m - B - -
Ho: i 400 nm Si0, @10, e—— 400 nm $iO,@1r0,
COy: 6% 250 nm SiO,@7Zr0O, m——— 250 nm SiO,@1rO,
E)?: 12% 100 nm SiO,@Zr0O,, m—— 100 nm Si0,@ZrO,

alance N,
#QOAK RIDGE | {10t rarion 100 150 200 250 300 100 150 200 250 300
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